THE REACTION OF O(¹D) WITH CCl₂O, CFCIO AND CF₂O

R. K. M. JAYANTY, R. SIMONAITIS and J. HEICKLEN

Department of Chemistry and Ionosphere Research Laboratories, Pennsylvania State University, University Park, Pa. 16802 (U.S.A.)

(Received June 3, 1975; in revised form August 8, 1975)

Summary

 $O(^{1}D)$ atoms, prepared from the photolysis of O_{3} at 253.7 nm and 25 °C, were reacted with CCl₂O, CFClO, or CF₂O. In each case some chemical reaction occurred, since the quantum yield of O_a removal, $-\Phi{O_3}$, exceeded 4, the value expected if O(¹D) were deactivated to $O(^{3}P)$ by the carbonyl halides. The values for $-\Phi{O_{3}}$ were 5.6 ± 0.2, 7.0 ± 0.5 , and 5.4 ± 0.4 , respectively. In the CCl₂O system, CO was formed with a quantum yield ranging from 0.4 to 0.8; at least 80% of the $O(^{1}D)$ removal by CCl₂O is by chemical reaction. In addition there was evidence for the formation of chlorine oxides. No products were found with CFClO or CF_2O , but we were unable to analyze for CO_2 , which may be the major product. That chemical reaction actually occurs in the CF2O system was substantiated by experiments in the presence of O_2 . If no chemical reaction had occurred, $-\Phi{O_3}$ should have dropped to 0, but it only dropped to 1.1. The rate coefficients relative to the $O(^{1}D)-N_{2}O$ reaction were obtained by adding N_2O to the system, and these were found to be 1.57, 0.96, and 0.41 with about a 10% uncertainty for the reaction of $O(^{1}D)$ with CCl₂O, CFClO and CF₂O, respectively.

Introduction

In previous publications [1, 2] we have reported on our studies of the photolysis of CCl_4 and the chlorofluoromethanes in the presence of O_2 and O_3 and their reactions with $O({}^1D)$ atoms. These studies have shown that photolysis and reaction with $O({}^1D)$ atoms gives rise to CCl_2O , CFClO, or CF₂O as a major product. In the stratosphere these molecules will be subject to photolysis and may react with $O({}^1D)$ atoms (and perhaps with other atmospheric species); thus CCl_2O and CFClO may release additional free chlorine atoms which will participate in O_3 destruction. Consequently a detailed understanding of the photolysis in the presence of O_2 and the reactions with $O({}^1D)$ atoms of these molecules is important. In this paper we report on the reactions of $O({}^{1}D)$ atoms produced from O_{3} photolysis at 253.7 nm with CCl₂O, CFClO and CF₂O. As far as we know no previous studies of these reactions have been reported except for a preliminary measurement of the rate coefficient for the reaction of $O({}^{1}D)$ with CF₂O relative to that for N₂O [3].

Experimental

The experiments were performed in a conventional Hg-free vacuum line equipped with Teflon stopcocks with Viton "O" rings. The cylindrical quartz reaction cell was 10 cm long and 5 cm in diameter. The O₃ was distilled at 87 °K before use. Extra dry grade O₂ from the Matheson Co. was used without further purification. The CCl₂O, CFClO, CF₂O and N₂O were obtained from the Matheson Co. and were purified by degassing at 77 °K. In a few experiments CCl₂O was purified by degassing at 113 °K. All the pressures of the above-mentioned gases were measured with a H₂SO₄ manometer. The O₃ pressures was measured spectrophotometrically at 253.7 nm and could be monitored continuously during the reaction.

The $O(^{1}D)$ atoms were produced by O_{3} photolysis with 253.7 nm radiation which was obtained from a Hanovia "spiral" low pressure Hg resonance lamp. The 253.7 nm line was isolated by passing the radiation through Cl_{2} gas and Corning CS 7-54 filters before entering the reaction cell.

The actinometry at 253.7 nm was performed by either measuring the O_3 removal rate in pure O_3 ($-\Phi \{O_3\} = 5.5$ [4]) or by measuring the rate of N_2 production in the photolysis of O_3 in the presence of excess N_2O . For the latter system $\Phi\{N_2\} = 0.46$ for thermally equilibrated $O(^1D)$ atoms and $\Phi\{N_2\} = 0.41$ for $O(^1D)$ atoms possessing excess translational energy [5].

Analysis of CO and N₂ was made with a thermal conductivity gas chromatograph equipped with a copper column (20 ft \times ¼ in) containing 5Å molecular sieves. Analysis for CO₂ (a possible reaction product) was not possible owing to the fact that the CFClO and CF₂O decomposed to CO₂ on the chromatographic columns. With CCl₂O, a good separation did not result.

Attempts were made to detect other products by i.r. analysis of the reaction mixture with a Beckman Microspec infra-red spectrophotometer after photolysis of ~6 Torr O_3 , 5 - 10 Torr O_2 and excess substrate. The O_2 served to reduce the rate of O_3 consumption by regeneration *via* the reaction:

 $O(^{3}P) + O_{2} + M \rightarrow O_{3} + M$

TABLE 1

Photolysis of O₃-X mixtures at 253.7 nm and 25 °C

[X] (Torr)	[O ₃] (Torr)	[He] (Torr)	[O ₂] (Torr)	I _a (mTorr/min)	$-\Phi{O_3}$	Φ{ CO }
			[X] =	[CCl ₂ O]		<u></u>
9.2	2.97			16.2		0.42
10.3	0.42			12.6	6.0	0.79
11.5	0.35			11.5	5.9	
18.2	3.64			16.2		0.53
19.7	2.97			16.2		0.57
22.5	0.35			11.5	5.5	0.61
28.9	2.97			16.2	·	0.54
32.8	0.35		i s an ni ing k	11.5	5.1	0.74
37.1	2.83			16.2		0.76
38.0	0.35			11.5	5.7	0.74
43.0	2.97	250	••	16.2		0.67
43.2	0.42			12.6	5.6	0.79
46.5	0.35			11.5	5.4	0.78
56.0	2.97			16.2		0.76
			[X] =	[CFClO]		
5.9	0.31			11.6	7.2	
11.7	0.31		- •	11.6	6.9	
17.4	0.31		• •	11.6	7.5	
23.5	0.31		4.8	11.6	5.8	• -
27.1	0.42			12.6	7.4	
			[X] =		•••	
F F	0.01			11.0		
5.5	0.31			11.9	5.9	••
7.3	0.11	••		5.0	4.5	
9.3	0.42			15.3	6.4	
9.7	0.31			11.9	5.3	
10.4	0.49			15.4	5.3	••
15.4	0.31			11.9	5.4	• -
20.1	0.49	250	4.9	15.4	1.9	
22.1	0.11		```	5.0	5.1	
29.7	0.31	. .	- -	11.9	5.6	••
30.5	0.31			11.9	5.1	••
38.9	0.12	690	9.6	5.0	1.1	
40.0	0.47	530	4.1	15.5	1.7	• -
42.2	0.12	690	10.6	5.0	1.1	••
48.9	0.47	400	3.6	15.5	2.1	

Results

The photolysis of O_3 at 253.7 nm in the presence of CCl_2O or CFClO or CF₂O leads to the consumption of O_3 . In the case of CFClO or CF₂O they did not absorb any measurable fraction of the radiation under our

conditions. The CCl₂O absorbed up to 5% of the radiation. CO is produced in the O_3 -CCl₂O system, but not in the other two systems. No other products could be detected by i.r. analysis of the reaction mixtures even after extended irradiation times. However, in the O_3 -CCl₂O system after extended irradiation a brownish-red color could be observed in a trap of the frozen reaction mixture at 77 °K indicating the presence of chlorine oxides. CO₂ may have been produced in all systems, but analysis for it was not possible.

The average initial O_3 removal quantum yields $(-\Phi\{O_3\})$ for the O_3-CCl_2O , $O_3-CFClO$ and the O_3-CF_2O systems are 5.6 ± 0.2, 7.0 ± 0.5, and 5.4 ± 0.4, respectively, independent of total pressure. The results are presented in Table 1. In the case of the O_3-CF_2O system, $-\Phi\{O_3\}$ was also measured in the presence of a few Torr of O_2 and excess He in order to establish whether there is a chemical reaction between $O(^1D)$ and CF_2O . The O_2 and He pressures were adjusted such that $O(^1D)$ deactivation by them was not important, but all the $O(^3P)$ atoms were scavenged by O_2 via:

$$O(^{3}P) + O_{2} + He \rightarrow O_{3} + He$$

The limiting value of $-\Phi{O_3} = 1.1$ is obtained at ~10 Torr O₂ and 700 Torr He (Table 1). Under these conditions >95% of the O(³P) atoms are scavenged, but <30% of the O(¹D) atoms are deactivated as can be shown by calculation with known rate coefficients [6].

The CO quantum yield for the O_3 -CCl₂O system is given in Table 1. It can be seen that Φ {CO} is clearly dependent on the CCl₂O pressure, going from about 0.4 at 10 Torr to about 0.7 - 0.8 at 40 - 60 Torr with ~3 Torr O₃. Cl₂ formation was not determined owing to difficulties with Cl₂ analysis.

The rate coefficients for the $O(^{1}D)$ atom reactions with $CCl_{2}O$, CFClO and CF₂O were determined by competitive experiments with added N₂O. The procedure is completely identical to our measurement of the rate coefficients for the reaction of $O(^{1}D)$ atoms with the chlorofluoromethanes reported in an earlier paper [2], where the reliability and validity of this method was established. Briefly the method consists of irradiating mixtures of O₃-N₂O-X, where X \equiv CCl₂O, CFClO or CF₂O at 253.7 nm and determining the rate of N₂ production, $R\{N_2\}$, as a function of the [X]/ [N₂O] ratio. The results are presented in Table 2.

Discussion

The photolysis of O_3 at 253.7 nm proceeds as follows [4]:

$$\begin{array}{lll}
O_3 + h\nu & \rightarrow O_2(^1\Delta) + O(^1D) & (1) \\
O_2(^1\Delta) + O_3 & \rightarrow O_2 + O(^3P) & (2) \\
O(^3P) + O_3 & \rightarrow 2O_2 & (3)
\end{array}$$

In the CCl₂O system, $\leq 5\%$ of the photoreaction is due to CCl₂O absorption, but this is of no consequence since the ClO intermediate is produced regard-

TABLE 2

[X]	[X]	[N ₂ O]	[O ₃]	$R\{N_2\}$
[N ₂ O]	(Torr)	(Torr)	(Torr)	(mTorr/min)
		$X = CCl_2$	0	
		55.6	2.97	6.00
0.32	4.2	13.2	2.83	4.16
0.65	8.2	12.7	2.83	3.33
0.98	12.9	13.1	2.83	2.50
1.24	15.1	12.2	2.83	1.92
1.62	21.1	13.0	2.83	1.66
2.42	31.9	13.2	2.83	1.25
2.95	32.8	11.1	2.83	1.00
		$\mathbf{X} = \mathbf{CFC}$	10	
		66.0	2.83	6.00
0.85	10.3	12 .1	2.83	3.25
1.49	18.5	12.4	2.97	2.50
1.73	20.6	11. 9	2.97	2.17
1.82	24.7	13.6	2.97	2.04
2.50	32.5	13.0	2,97	1.64
2.62	29.6	11.3	2.97	1.58
2.77	33.2	12.0	2.97	1.54
3.82	45.8	12.0	2.83	1.33
		$\mathbf{X} = \mathbf{CF_2}\mathbf{C}$	C	
		55.6	2.97	6.00
0.50	6.3	12.7	2.83	4.25
0.77	9.8	12.7	2.83	3.83
1.85	25.0	13.5	2.83	3.17
2.63	33.2	1 2.6	2.83	2.50
2.69	32.3	12.0	2.83	2.67
3.47	39.6	11.4	2.97	2.20
4.28	47.5	11.1	2.83	2.17
4.63	51.8	11.2	2.83	2.00

Photolysis of O₃-N₂O-X mixtures at 253.7 nm and 25 °C.

less of whether the CCl₂O or O₃ absorbs the radiation (see below). If all of the O(¹D) atoms are only deactivated to O(³P) by the substrate (CCl₂O, CFClO, or CF₂O), then $-\Phi{O_3}$ should be 4.0. In none of the three systems was this the case; $-\Phi{O_3}>4$, and reaction must be occurring at least part of the time.

In the CCl_2O experiments, direct evidence for reaction comes from the fact that CO is produced, its quantum yield reaching 0.79 in one experiment. The only reasonable way to produce CO appears to be:

$O(^{1}D) + CCl_{2}O$	\rightarrow ClO + ClCO	(4)
ClCO + M	\rightarrow Cl + CO + M	(5)

Reaction (5) occurs readily since $D{Cl-CO} = 6.3$ kcal/mol [7]. Presumably

Fig. 1. Plot of $\gamma \Phi \{CO\}^{-1}$ vs. $[O_3]/[M]$ in the photolysis of $O_3 - CCl_2O$ mixtures at 253.7 nm and 25 °C.

 Φ {CO} varies with conditions because of the competition between reaction (5) and

$$ClCO + O_3 \rightarrow CO_2 + ClO_2 \text{ (or } Cl + O_2) \tag{6}$$

The rate law for CO formation becomes:

$$\gamma \Phi \{ \text{CO} \}^{-1} = \beta (1 + k_6 [\text{O}_3] / k_5 [\text{M}])$$
 (a)

where γ is a small correction due to the fact that some of the O(¹D) may react with O₃:

$$O(^{1}D) + O_{3} \rightarrow 2O_{2} \tag{7}$$

so that

$$\gamma \equiv k_4 \left[\text{CCl}_2 \text{O} \right] / \left(k_4 \left[\text{CCl}_2 \text{O} \right] + k_7 \left[\text{O}_3 \right] \right)$$

and β represents the ratio of the likelihood of all reaction paths in the $O(^{1}D)-CCl_{2}O$ reaction to the likelihood of ClCO production.

Figure 1 is a plot of $\gamma \Phi \{CO\}^{-1}$ vs. $[O_3]/[M]$, where [M] is taken as the total pressure. The data at high $[O_3]$ (~3 Torr) fall on a good straight line with the intercept = 1.1 ± 0.1. However, the data at lower $[O_3]$ lie significantly above the line. The reason for this is not clear. The points at low $[O_3]$ are much less accurate (because less CO is produced) and may have systematic error associated with them. Alternatively CClO may be involved in other reactions at low O_3 , for example:

$$O(^{3}P) + CClO \rightarrow CO_{2} + Cl$$

TABLE 3

Summary of measured and literature values of k_x/k_9

x	k_x/k_9			
	This work	Literature		
CCl ₂ O	1.57 ^a 0.96 ^a			
CFCIO CF ₂ O	0.41 ^ª	0.27 ^b		

^aAbout 10% uncertainty in these values. ^bReference 3.

Fig. 2. Plots of $R\{N_2\}^{-1} - \alpha / (R_0\{N_2\}^{-1} - \alpha_0)$ vs. [X]/[N₂O] in the photolysis of N₂O-O₃-X mixtures at 253.7 nm and 25 °C.

 $ClO + CClO \rightarrow CO_2 + Cl_2$

With CFClO, the chlorine abstraction reaction can, and presumably does, occur since $-\Phi{O_3} > 4$. However, with CF₂O, chlorine atom abstraction is not possible, yet some reaction [other than deactivation of O(¹D)] apparently does occur because $-\Phi{O_3} > 4$. To check this conclusion experiments were done with added O₂ to remove any O(³P) atoms that would be formed:

$$O(^{3}P) + O_{2} + M \rightarrow O_{3} + M$$
 (8)

Under the conditions of the reaction, if the $O(^{1}D)-CF_{2}O$ reaction only deactivated $O(^{1}D)$, then $-\Phi\{O_{3}\}$ should approach 0 (actually ~0.03 for $[O_{2}] \sim 10$ Torr, [He] = 700 Torr). However, measurements gave $-\Phi\{O_{3}\} = 1.1$, indicating that some chemical reaction occurred.

Rate coefficients for the reactions of $O({}^{1}D)$ atoms with CF₂O, CFClO, and CCl₂O were determined relative to N₂O. The photolysis of O₃-N₂O-X mixtures leads to the competition:

$$\begin{array}{ll}
O(^{1}D) + X & \rightarrow \text{ not } N_{2} & (X) \\
O(^{1}D) + N_{2}O \rightarrow N_{2} + O_{2} & (9a) \\
& \rightarrow 2NO & (9b)
\end{array}$$

where $X = CF_2O$, CFClO or CCl₂O. The rate law for N₂ formation is given by:

$$(R\{N_2\}^{-1} - \alpha)/(R_0\{N_2\}^{-1} - \alpha_0) = 1 + k_x [X]/k_9 [N_2O]$$
 (b)

where $R\{N_2\}$ is the rate of N_2 formation and $\alpha = k_7 [O_3]/I_a k_{9a} [N_2O]$. The subscript 0 refers to the highest value of $[N_2O]/[O_3]$ used. Only a small fraction of the O(¹D) atoms are lost by reaction (7); thus α and α_0 are small. In computing α and α_0 , $k_7/k_9 = 2.5$ [2] and $k_{9a}/k_9 = 0.55$ were used [5]. Plots of the left hand side of equation (b) vs. $[X]/[N_2O]$ should be linear with a slope of k_x/k_9 .

Plots based on equation (b) are shown in Fig. 2. The plots are reasonably linear as predicted by equation (b). The slopes of the plots are given in Table 3. Literature values for CFClO and CCl₂O are not available. For CF₂O our value for k_x/k_9 differs from the value determined by Pitts *et al.* [3] by nearly a factor of 2. The reason for this discrepancy is not known.

Acknowledgements

This work was supported by the Atmospheric Sciences Section of the National Science Foundation through Grant No. GA-42856 and the National Aeronautics and Space Administration through Grant No. NGL-009-003 for which we are grateful.

References

- 1 R. K. M. Jayanty, R. Simonaitis and J. Heicklen, J. Photochem., 4 (1975) 203.
- 2 R. K. M. Jayanty, R. Simonaitis and J. Heicklen, J. Photochem., 4 (1975) 381.
- 3 J. N. Pitts, Jr., H. L. Sandoval and R. Atkinson, Chem. Phys. Lett., 29 (1974) 31.
- 4 E. Lissi and J. Heicklen, J. Photochem., 1 (1972) 39.
- 5 R. Simonaitis, R. I. Greenberg and J. Heicklen, Int. J. Chem. Kinet. 4 (1972) 497.
- 6 D. Garvin and R. F. Hampson, National Bureau of Standards Report NBSIR 74-430, Chemical kinetics data survey VII tables of rate and photochemical data for modelling of the stratosphere (revised), 1974.
- 7 J. Heicklen, Adv. Photochem., 7 (1969) 57.